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Molecular mediators of cardioprotective ischemic 
conditioning: focus on cytokines and chemokines
Christian Stoppe1, Sandra Kraemer1, Jürgen Bernhagen2,3,4

Ischemic conditioning is a promising treatment strategy to provide cardioprotection against ischemic heart disease (IHD), and 
remote ischemic preconditioning (RIPC) has been successfully demonstrated in numerous preclinical and clinical studies to 
protect from myocardial ischemia/reperfusion injury. However, large-scale multicenter clinical trials examining the efficacy 
of RIPC on clinical outcomes have been disappointing. Future strategies may encompass an altered clinical study design, the 
use of different anesthetics to avoid propofol, and specific molecular approaches that focus on the mediators that convey the 
RIPC signal from the remote organ to the heart. This review focuses on cytokines and chemokines that have been suggested 
to, at least partially, account for the remote cardioprotective RIPC signal cue. We discuss the classical chemokine CXCL12, the 
atypical cytokine/chemokine macrophage migration-inhibitory factor (MIF), and the anti-inflammatory cytokine interleukin-10 
(IL-10), and touch upon other cytokine- and alarmin-like factors such as adipocytokines, myokines, and RNase1. The available 
evidence for these factors is weighed against their roles in cardiac ischemia and their suitability as RIPC cues, including their 
expression and release profiles and receptors. Some of these mediators may qualify as cardioprotective target molecules in 
IHD.
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Introduction
Cardiovascular diseases (CVDs) including ischemic heart 
disease (IHD, also termed coronary heart disease (CHD) 
or coronary artery disease (CAD)), stroke, and peripheral 
arterial disease (PAD), are the world’s leading cause of death, 
accounting for an estimated 18 million death (or 31%) of all 
global deaths in 2016 (Moran et al., 2014) (https://www.who.
int-/cardiovascular_diseases/en/). Approximately 80% of these 
cases are due to IHD and ischemic stroke. Atherosclerosis 
is the main underlying cause of these diseases, which, in the 
heart, causes reduced blood flow to the coronary arteries. 
This can result in myocardial infarction (unstable angina, ST 
segment elevation myocardial infarction (STEMI), and non-ST 
segment elevation myocardial infarction (NSTEMI)) or sub-
acute symptoms of reduced oxygen supply to the heart that may 
necessitate planned surgical intervention at a later time point 
(Ruff and Braunwald, 2011; Pasterkamp et al., 2017; Vogel et 
al., 2017).

The highest priority of any intervention is to rapidly re-open 
the occluded coronary vessel. Re-opening of the blocked vessel 
not only restores impaired blood flow, but the ‘reperfusion’ 
process itself damages the heart due to a surge in reactive 

oxygen species (ROS) that cause cardiomyocyte stress, 
mitochondrial permeability transition pore (mPTP) opening, 
and death. This phenomenon is termed myocardial ischemia-
reperfusion (I/R) injury (IRI) (Hausenloy and Yellon, 2013, 
2016). IRI is not only observed during acute intervention with 
primary percutaneous coronary intervention (PPCI) in STEMI 
patients, but also in the setting of planned cardiac surgery, 
i.e. coronary artery bypass grafting (CABG) (Head et al.,
2018). Extensive efforts, encompassing both preclinical and
clinical studies, have been made in the past decades to develop
strategies to ameliorate cardiomyocyte damage incurred by IRI.
A main focus has been on cardioprotective strategies based on
‘ischemic preconditioning’ (IPC), which is brief episodes of
‘sub-threshold’ ischemia and reperfusion prior to prolonged
coronary artery occlusion. This procedure, which was first
introduced 30 years ago by Murry and colleagues, is typically
performed with a blood pressure cuff (Figure 1), and was found
to potently limit myocardial infarct size (Murry et al., 1986).
Ischemic conditioning can follow a variety of modalities, but
remote ischemic preconditioning (RIPC; often also abbreviated
as RIC) and ischemic postconditioning (IPost) are considered
to have the highest translational value. Cardioprotection by IPC
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has been impressively demonstrated in a variety of preclinical 
models and numerous smaller clinical trials, and there has been 
a consensus amongst these studies and a multitude of ex vivo 
and in vitro experiments that IPC is beneficial and reduces 
infarct size (Hausenloy and Yellon, 2016). Surprisingly, in 
2015 two large-scale multicenter trials investigating the role of 
RIPC in more than 3,000 enrolled patients undergoing elective 
cardiac surgery were simultaneously published in the New 
England Journal of Medicine (RIPHeart and ERICCA study) 
(Hausenloy et al., 2015a; Meybohm et al., 2015). Both studies 
tested the efficacy of upper-limb RIPC in patients undergoing 
elective open-heart surgery using on-pump coronary artery 
bypass graft (CABG) with or without valve surgery. Anesthetic 
management was not fully standardized across both trials, but 
the majority of patients were under propofol-induced anesthesia 
(Hausenloy et al., 2015a; Meybohm et al., 2015). With similar 
primary endpoints, both studies demonstrated a ‘neutral’ 
outcome, overall shedding some doubt on the validity of the 
IPC/RIPC therapeutic concept in IHD. In fact, these results 
somewhat questioned whether RIPC is a powerful and practical 
cardioprotective strategy and if it has a cardioprotective effect 
in the setting of cardiac I/R. The reasons for the inability of 
these trials to reproduce the clear efficacy of the earlier smaller 
clinical trials are still debated in the community and still not 
yet fully understood. One explanation may be an improvement 
in surgical and anesthetic management protocols that has led 
to an overall improved cardiovascular morbidity and mortality 
(Bell et al., 2016; Stoppe et al., 2017). Indeed, innovations in 
surgical myocardial preservation techniques, such as combined 
ante- and retrograde perfusion during bypass, are associated 
with smaller per se peri-operative myocardial damage (Candilio 
et al., 2014). Recent explorative studies and meta-analyses may 
offer mechanistic explanations for the lack of effect of RIPC 
(Bell et al., 2016; Heusch and Gersh, 2016; Heusch and Rassaf, 

2016; Benstoem et al., 2017; Stoppe et al., 2017; Ney et al., 
2018). Accordingly, propofol has been suggested as a major 
confounding factor, as it interferes with the effects of RIPC 
(Kottenberg et al., 2014; Heusch and Rassaf, 2016; Stoppe 
et al., 2016), and RIPHeart failed to demonstrate beneficial 
effects on troponin release and clinical outcomes in propofol-
anesthetized cardiac surgery patients (Meybohm et al., 2015). 

Together, this has highlighted the challenges in translating 
IPC-based cardioprotection into clinical practice. Yet, while 
disappointing at first sight and contradicting the numerous 
previous smaller-scale trials, the results of the ERICCA and 
RIPHeart trials are not in contradiction to successful RIPC 
procedures used in elective or primary PCI, where surgery-
associated inflammation and anesthesia-artifacts are not a 
confounding issue. To this end, it is of note that a multi-center 
trial is currently testing the hypothesis that RIPC protects from 
cardiac dysfunction in STEMI patients. The CONDI2/ERIC-
PPCI trial is a randomized controlled clinical trial examining 
whether RIPC reduces cardiac death and hospitalization for 
heart failure one year after PPCI intervention in >5000 STEMI 
patients (Hausenloy et al., 2015b; Cabrera-Fuentes et al., 2016a; 
Chong et al., 2018). Results of this trial are expected in 2020 
(https://clinicaltrials.gov/ct2/show/NCT02342522). Moreover, 
it has been suggested that the replacement of propofol, which 
specifically reverses the reduced troponin I release by RIPC 
in patients undergoing elective CABG, with other anesthetics, 
and/or altered clinical study design and patient selection might 
lead to a successful application of RIPC in IHD, at least for a 
sub-cohort of patients. After all, the procedure is simple, safe, 
non-invasive, and inexpensive, and the molecular and cellular 
mechanisms underlying RIPC-mediated cardiac protection are 
well understood on the effector (‘target organ’) side, involving 
cardiomyocyte signaling pathways such as the ‘reperfusion 
injury salvage kinase’ (RISK) and ‘survivor activating factor 

Figure 1. Overview of mediators that can serve as a RIPC trigger in cardioprotection. Mediators can be humoral factors such as cytokines, 
chemokines, and other humoral factors as indicated, or neuronal pathways. The role of the inflammatory response, as it may generally 
contribute to ischemia-reperfusion stress of the heart, is indicated. In this article, we focus on the classical chemokine CXCL12, the atypical 
chemokine MIF, and the classical cytokine IL-10, while the evidence for adipocytokines, myokines, erythropoietin, RNase1, and extracellular 
vesicles/exosomes is briefly touched upon (see text). Abbreviations: CXCL12, CXC motif chemokine 12; EV, extracellular vesicle; MIF, 
macrophage migration-inhibitory factor; ROS, reactive oxygen species; NOx, reactive nitrogen species; HSPs, heat shock proteins.
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enhancement’ (SAFE) pathways (Heusch and Gersh, 2016; 
Rossello and Yellon, 2016). For the ‘trigger’ side, numerous 
humoral factors and neural pathways have been suggested 
and discussed (Figure 1), but the main RIPC stimulus, if there 
is such a key and decisive molecular player, has not been 
identified. Thus, while the factors on the ‘trigger’ side are less 
well characterized, a number of recent studies have investigated 
the causative roles of several cytokines, growth factors, and 
other humoral factors in cardiac RIPC, suggesting that some 
of them may be promising RIPC targets for cardioprotection. 
In fact, specific molecular strategies that mimic RIPC-
based cardioprotection might be suitable to ‘replace’ the I/R 
conditioning cycles of the RIPC procedure, which likely leads 
to broad activation of several factors. Moreover, although no 
adverse effects of RIPC were reported in the ERICCA and 
RIPHeart trials, the ischemia per se or the repetitive clamping 
during CABG may bear risks ranging from embolic risks to 
complications during open heart surgery in aged patients.

Here, we focus specifically on the cytokines and chemokines 
that have been implicated as RIPC-mediating factors in 
cardioprotection that therefore may become potential targets 
that could mimic or replace the RIPC procedure of brief 
repetitive cycles of ischemia and reperfusion of a remote 
organ or limb. We will summarize the proteins implicated and 
discuss the evidence that may qualify them as future targets for 
cardioprotective strategies.

Mediators of  remote ischemic precondit ioning in 
cardioprotection: from specific humoral factors to neural 
pathways
Mediators that have been reported to convey the cardio-
protective effect of RIPC range from specific humoral factors to 
immunological responses and neural pathways (Figure 1). The 
humoral factors may be classified into cytokines/chemokines, 
growth factors, and ‘other’ humoral factors (Tsibulnikov et al., 
2019). The latter constitute a heterogeneous group of factors 
comprising released organelles such as extracellular vesicles 
(EVs) including exosomes, signaling-competent metabolites 
and lipids such as adenosine and prostaglandins, respectively, 
peptide hormones such as adrenomedullin, bradykinin-2 and 
angiotensin-1, danger-associated molecular patterns (DAMPs) 
or alarmins such as heat shock-proteins (HSPs), released 
endonucleases such as ribonuclease-1 (RNase1), as well 

as ROS and nitrogen (NOx) species. Inflammatory priming 
may encompass preconditioning with pattern recognition 
receptor (PRR) agonists such as the pathogen-associated 
molecular patterns (PAMPs) lipopolysaccharide or CpG-
oligodeoxynucleotides (CpG-ODNs), which stimulate the 
Toll-like receptors (TLRs) TLR4 and TLR9, respectively 
(Knuefermann et al., 2008; Klinman et al., 2009; Eckle and 
Eltzschig, 2011; Eltzschig and Eckle, 2011). Neuronal pathways 
reported to contribute to cardioprotection may involve the 
activation of peripheral sensory fibers. These mediators and 
pathways have been extensively studied and their contributions 
to remote conditioning effects were discussed in several 
excellent recent reviews (Hausenloy and Yellon, 2009; Eckle 
and Eltzschig, 2011; Hausenloy et al., 2012; Hausenloy and 
Yellon, 2013; Heusch et al., 2015; Bell et al., 2016; Cabrera-
Fuentes et al., 2016b; Davidson et al., 2017; Basalay et al., 
2018; Tsibulnikov et al., 2019). 

In the current article, we focus on the chemokines 
stromal cell-derived factor-1α (SDF-1α)/CXCL12 and 
macrophage migration-inhibitory factor (MIF), and the 
cytokine interleukin-10 (IL-10). We will also briefly mention 
adipocytokines as cytokine/chemokine-type humoral factors 
and include the growth factor erythropoietin (EPO) due to its 
cytokine-like properties. Although the focus in our review 
will be on ‘cardio’protective factors, we also include irisin, a 
recently identified myocyte-derived cytokine (‘myokine’) that 
has been reported to function as a protective RIPC signal for 
the lung and other organs affected by prolonged ischemia, as 
well as the heart. Moreover, we will cover the EV/exosome 
cardioprotection paradigm as these secreted cellular vesicles 
transport a variety of factors as their cargo including micro-
RNAs (miRs) and cytokines/DAMPs, and mention the role of 
extracellular RNA (eRNA)/RNase1 system. While some of 
these factors have roles in both intracardiac signaling during IRI 
and remote signaling as ‘true’ RIPC cues (Heusch et al., 2015), 
we will confine our article to those factors for which an explicit 
role as remote RIPC signal has been suggested.

Cytokines and chemokines as mediators of cardioprotective 
remote ischemic pre-conditioning 
Cytokines and chemokines that are predestined to serve 
as RIPC signaling cues (Figure 1) typically fulfill certain 
expression, release, and signaling properties. These include: 
i) rapid induction of their expression and/or secretion by 
cycles of ischemia and reperfusion, i.e. by the RIPC trigger, 
and/or by brief episodes of ischemia; and/or ii) expression in 
preformed intracellular stores (i.e. in secretion vesicles or in 
the cytosolic compartment); iii) substantial production from a 
remote tissue/organ that is well responsive to ischemic stimuli 
(the endothelium in limb muscle tissue would be an ideal tissue 
in this sense); reasonable stability for the mediator to reach the 
heart and engage in cardiac signal transduction at a prolonged 
time interval AFTER the RIPC trigger; iv) engagement of their 
cardiac-expressed signaling-competent receptors, which implies 
that the receptor(s) of the respective RIPC signal need to be 
expressed on cardiomyocytes at and/or before the time point of 
cardiac IRI (Table 1). 

Stromal cell-derived factor-1α (SDF-1α)/CXCL12
Chemokines are small 8-14 kDa cytokines that are structurally 
characterized by N-terminal signature cysteine residues 
and a so-called chemokine fold (Clark-Lewis et al., 1995; 
Mantovani, 1999; Murphy et al., 2000; Mackay, 2001; 
Fernandez and Lolis, 2002; Charo and Taubman, 2004). They 
are best known for their chemotactic capacity and their role 
in orchestrating the trafficking and homing of immune cells, 
but they have numerous other functions in homeostasis and 
disease. The chemokine family of ‘chemo’tactic cyto’kines’ 

Table 1. Criteria of a remote signaling trigger that renders it suitable 
as a cardioprotective factor in remote ischemic conditioning of the 
heart.



REVIEW ARTICLE

Conditioning Medicine 2019 | www.conditionmed.org

Conditioning Medicine | 2019, 2(3):122-133

125

consists of 49 chemokines that interact with 18 signaling-
competent receptors, indicating a redundancy on the side of 
the ligands. Chemokines are classified according to the number 
and positioning of the signature cysteine residues into CC-, 
CXC-, CXXXC-, and C-type chemokines (Murphy et al., 
2000). Their interacting receptors are classified accordingly. 
Complexity in the chemokine network is further enhanced by 
five atypical chemokine receptors (ACKRs) and more than 10 
atypical chemokines (ACKs), an emerging and structurally 
heterogeneous ‘functional’ chemokine sub-family that 
encompasses mediators such as MIF and human β-defensins 
that can engage in high-affinity binding with classical 
chemokine receptors albeit lacking the signature cysteines and 
the chemokine-fold (see below) (Tillmann et al., 2013; Pawig et 
al., 2015; Kapurniotu et al., 2019).

Stromal cell-derived factor-1α (SDF-1α) is a member of the 
sub-category of CXC-type chemokines. Among these, it belongs 
to the ELR - sub-class (Murphy et al., 2000), and accordingly 
is generally considered a homeostatic chemokine with major 
roles in development and differentiation, stem cell recruitment, 
and immune cell homing (Zernecke et al., 2005; Zernecke et 
al., 2008a; Zernecke et al., 2009; Doring et al., 2017). However, 
CXCL12 also has tissue- and context-specific pro-inflammatory, 
tumorigenic, and pro-atherogenic roles (Doring et al., 2014; 
Weber et al., 2016). The many roles of CXCL12 in homeostasis, 
development/differentiation, cell trafficking, inflammation, and 
cancer have been extensively reviewed elsewhere (Burger and 
Kipps, 2006; Doring et al., 2014; Pawig et al., 2015; Pozzobon 
et al., 2016; Janssens et al., 2018). CXCL12 signals through 
the CXC-type receptor CXCR4, which mediates most of its 
functions in homeostasis, cell recruitment, and disease. For 
a long time, the CXCR4/CXCL12 axis was considered to be 
one of the few specific ligand/receptor pairs in the chemokine 
network. However, it is now clear that CXCL12 also binds 
to the chemokine receptor CXCR7/ACKR3, which (mostly) 
serves as a scavenger receptor to ‘shape’ CXCL12 gradients 
(Bachelerie et al., 2014; Koenen et al., 2019). Inversely, CXCR4 
is engaged by the atypical chemokine MIF (see next chapter), 
human β-defensin 3 (HBD3), and a heterodimeric complex 
of the alarmin HMGB1 and CXCL12, as well as extracellular 
ubiquitin and HIV gp120 in stress and infections, respectively. 
The cardio-protective role of CXCL12 in RIPC thus also 
needs to be viewed in the context of CXCR4 interactions and 
functions of these alternative chemokine-like ligands (Pawig et 
al., 2015).

In the heart and in cardiac I/R, CXCL12 has been ascribed 
dual roles with both ameliorating and disease-exacerbating 
functions (Liehn et al., 2011b; Doring et al., 2014; Pawig et al., 
2015). One of the major regulatory sites in the CXCL12 gene 
promoter is the hypoxia-inducible factor (HIF)-1α responsive 
element (HRE) (Ceradini et al., 2004). Accordingly, CXCL12 
expression and secretion in endothelial cells is prominently 
driven by hypoxic stress and has been linked to progenitor cell 
recruitment during ischemia (Ceradini et al., 2004; Ceradini and 
Gurtner, 2005). These properties render CXCL12 a potential 
candidate to serve as a RIPC signaling cue. In fact, Yellon, 
Davidson and colleagues found that CXCL12 is profoundly 
elevated in a rat model of RIPC in cardiac IRI (Davidson 
et al., 2013). Strikingly, they observed that RIPC-mediated 
decreased myocardial infarct size and functional recovery of 
cardiac papillary muscle was partially reversed by AMD3100, 
a pharmacological inhibitor of the CXCR4/CXCL12 axis. 
Moreover, mimicking a therapeutic application of CXCL12, 
administration of the recombinant chemokine protein confirmed 
its protective role in this model, which was again blocked 
by AMD3100 (Davidson et al., 2013; Bromage et al., 2014). 
They also studied dipeptidyl peptidase 4 (DPP4), a circulating 
enzyme that rapidly inactivates CXCL12 by N-terminal 

cleavage (Noels and Bernhagen, 2016), and the inhibition of 
which is protective during myocardial infarction (Noels et al., 
2018; Xie et al., 2018; Ziff et al., 2018). Interestingly, although 
DPP4 also has other substrates, such as the incretins, that play a 
role in metabolic and cardiovascular diseases (Matheeussen et 
al., 2012) and although a counter-intuitive association between 
post-operative DPP4 activity and worse patient outcome 
was noted in a cardiac surgery cohort (Noels et al., 2018), a 
potential role for full-length CXCL12 in the setting of cardiac 
RIPC could be uncovered capitalizing on a novel anti-CXCL12 
antibody (Bromage et al., 2017). The role of DPP4-processed 
versus full-length CXCL12 in cardiac RIPC will have to be 
addressed further by future mechanistic studies.

While in this review article we focus on the role of 
‘remote’ RIPC cues, the numerous protective activities 
of the intracardiac CXCL12/CXCR4 axis will be briefly 
mentioned. Two main activity types can be differentiated: i) 
recruitment of CXCR4-expressing stem cells with angiogenic 
and vasculogenic capacity; and ii) local loops involving 
cardioprotective signaling via cardiomyocyte expressed CXCR4 
pathways that contribute to protection through the RISK and 
SAFE routes. For example, these activities involve the release 
of cardiac CXCL12 by the ischemic myocardium, which 
then serves as a major recruitment signal for e.g. CXCR4+ 
endothelial progenitor cells. Additionally, autocrine/paracrine 
action of cardiomyocyte-, cardiac fibroblast-, or myocardial 
endothelial cell-derived CXCL12 may act to enhance protective 
AKT and ERK1/2 signaling pathways in ischemic stressed 
cardiomyocytes. These activities and the origin and source of 
secreted CXCL12 cannot always be distinguished from ‘remote’ 
CXCL12 signals as it may derive following brief RIPC episodes 
of ischemia/reperfusion in peripheral organs or limbs. They 
have been reviewed extensively (Farouk et al., 2010; Liehn et 
al., 2011a; Penn et al., 2012; van der Vorst et al., 2015) and will 
not be further discussed herein. 

Macrophage migration-inhibitory factor (MIF)
MIF is a long-known (David, 1966; Weiser et al., 1989; 
Calandra and Roger, 2003) evolutionarily highly conserved 
chemokine-like inflammatory cytokine that has well-known 
pro-inflammatory roles in many diseases (Bernhagen et al., 
1993; Donnelly et al., 1997; Calandra et al., 2000; Calandra 
and Roger, 2003; Morand et al., 2006). In cardiovascular 
pathologies, a double-edged sword role has been suggested for 
MIF (Zernecke et al., 2008b; Rassaf et al., 2014; Sinitski et al., 
2019). 

MIF is a small 12.5 kDa protein that crystallizes as a trimer 
and shares some structural features with bacterial enzymes, 
the cytokine IL-1β, and the CXC chemokine CXCL8, but does 
not belong to any of the known cytokine or chemokine classes, 
if pro forma structural criteria are followed (Sun et al., 1996; 
Murphy et al., 2000). MIF is well known to be secreted from 
immune cells such as monocytes/macrophages and T cells, 
but it is widely expressed and can be secreted from preformed 
intracellular stores by non-conventional secretion from a 
variety of cell types such as endothelial and parenchymal cells, 
including cardiomyocytes following inflammatory, hypoxic, or 
other cell stress triggers (Calandra and Roger, 2003; Kapurniotu 
et al., 2019). As such, MIF ‘fulfills’ several of the above-
discussed criteria that a RIPC signaling cue should have. 

Having been discovered as the first cytokine over 50 years 
ago (David, 1966), MIF is considered an extracellular-acting 
cytokine with chemokine-like properties, but intracellular MIF 
has more recently been suggested to contribute to some of its 
functions (Kapurniotu et al., 2019). The activities of MIF are 
mediated by high-affinity interaction with its cognate receptor 
CD74, the surface-expressed form of class II invariant chain 
Ii (Leng et al., 2003), as well as by non-cognate engagement 
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of the CXC chemokine receptors CXCR2 or CXCR4. As 
mentioned above, MIF thus ‘shares’ CXCR4 with CXCL12. 
Preliminary structural evidence suggests that MIF and CXCL12 
cover distinct, though overlapping, binding sites on CXCR4 
that make specific targeting approaches possible (Crump et 
al., 1997; Wu et al., 2010; Rajasekaran et al., 2016; Lacy et 
al., 2018). Of note, the MIF receptors, in particular CXCR4, 
can also be upregulated on endothelial and tissue cells upon 
inflammation and hypoxia (Kanzler et al., 2013). While CD74 
is primarily considered a pro-proliferative, inflammatory, 
and metabolic receptor of MIF, the MIF chemokine receptor 
primarily controls inflammation, atherogenesis, and leukocyte 
recruitment (Bernhagen et al., 2007; Sinitski et al., 2019). 

While MIF is an upstream regulator of innate immunity 
and generally exhibits pro-inflammatory disease-exacerbating 
effects in various inflammatory and autoimmune pathologies 
including atherosclerosis, it has also been found to protect 
from hepatic fibrosis and has pivotal protective activities in 
IHD. It thus displays a complex role in cardiovascular diseases, 
dependent on the stage (chronic versus acute), vessel type, 
and disease context. MIF promotes atherosclerosis through 
enhancing atherogenic monocyte and T-cell infiltration via 
CXCR2- and CXCR4-based pathways, respectively, and also 
fuels plaque inflammation and destabilization. MIF’s pro-
atherogenic properties in atherogenesis and atheroprogression 
have been unanimously observed in various experimental 
models; this role is further supported by clinical correlations of 
MIF protein plasma levels and MIF’s polymorphic promoter 
in human atherosclerotic disease (Rassaf et al., 2014; Tilstam 
et al., 2017). However, MIF’s role in the ischemic heart and 
in cardiac IRI is bivalent. Brief (15-30 min) cardiac ischemia 
followed by up to a 4 h period of reperfusion in murine in 
vivo models suggests that MIF potently protects from IRI. 
Mechanistically, this cardioprotective effect is mediated by 
CD74/AMP kinase (AMPK)-mediated metabolic signaling 
in I/R-challenged cardiomyocytes. It is further enhanced 
by a MIF-based redox mechanism that also includes post-
translational nitrosylation of MIF (Miller et al., 2008; Qi et 
al., 2009; Koga et al., 2011; Luedike et al., 2012; Rassaf et 
al., 2014). That this cardioprotective effect of MIF might 
be therapeutically exploitable was first shown in an elegant 
study by Young, Bucala, and colleagues. They identified an 
intriguing mechanism called ‘pharmacologic augmentation’ 
that is based on a small molecule agonist of MIF, a compound 
termed MIF20, which binds to endogenous MIF and induces a 
conformational change that enhances CD74 binding to foster 
the cardioprotective capacity of MIF by stimulating CD74/
AMPK signaling (Wang et al., 2013). Curiously, augmentation 
capitalizes on MIF20 binding into the conserved N-terminal 
tautomerase cavity of MIF, indicating that this evolutionarily 
conserved enzyme activity of MIF, for which to date no 
role in mammalians has been found, could be harnessed for 
protection of the heart. However, the role of MIF in cardiac 
ischemia is probably more complicated. When longer periods 
of ischemia were applied and later time points after the onset 
of reperfusion were analyzed, cardioprotection was observed 
in Mif–/– mice, suggesting that under these conditions, MIF has 
disease-exacerbating inflammatory effects. In fact, it appears 
that MIF-triggered CXCR2- or CXCR4-mediated inflammatory 
activities dominate in this delayed post-reperfusion window 
(Gao et al., 2011; Dayawansa et al., 2014). We suggest a 
‘wave’ or ‘phase-dependent’ model for MIF’s contribution in 
IRI, following up on an earlier suggestion by Dayawansa et 
al. (2014). Accordingly, MIF is protective in the early phase 
of IRI. The various data posit that it is cardiac MIF (most 
likely and predominantly derived from cardiomyocytes) that 
is released in the ischemic and/or early reperfusion phase 
that is responsible for the cardioprotective effect seen in this 

phase (‘1st wave cardioprotective MIF’) (Miller et al., 2008; 
Qi et al., 2009; Luedike et al., 2012; Rassaf et al., 2014; Pohl 
et al., 2016). In contrast, MIF produced in later stages of 
the reperfusion and post-reperfusion inflammatory phases is 
predominantly ‘inflammatory’, exacerbating the inflammatory 
cascade that prevails in this phase. ‘Second wave inflammatory 
MIF’ is mainly produced by the infiltrating myeloid cells, but 
local cardiac MIF may still contribute to this 2nd wave effect of 
MIF. It has been suggested that MIF-triggered inflammatory 
CXCR2/4 pathways ‘outcompete’ the protective CD74 pathway 
in this phase (Liehn et al., 2011b; Liehn et al., 2013; Bernhagen, 
2019). In fact, it is obvious that there is a continuous transition 
between both phases, but although redox modifications have 
been suspected to play a role, the molecular switch converting 
‘good MIF’ into ‘bad MIF’ has remained elusive (Schindler 
et al., 2018). Exacerbating inflammatory effects of MIF may 
also prevail under conditions of more profound (elongated) 
ischemia, although reports have been partially contradictory 
(Gao et al., 2011; Koga et al., 2011).

The MIF ligand family was recently ‘doubled’, when it 
became clear that the structural homolog of MIF, D-dopachrome 
tautomerase (D-DT)/MIF-2, partially phenocopies MIF 
activities (Merk et al., 2011; Merk et al., 2012). Evidence from 
an experimental model of cardiac IRI capitalizing on conditional 
cardiomyocyte-specific Mif-2-knockout mice suggests that this 
also holds true for the cardioprotective CD74/AMPK pathway, 
which is also addressed by MIF-2 (Qi et al., 2014). Although 
clinical correlations between MIF-2 plasma levels and outcome 
parameters from cardiac surgery patients suggest that the role 
of MIF-2 in IRI may differ from that of MIF (Stoppe et al., 
2015), it has been speculated that MIF-2 could contribute to the 
phase-specific switch regulating the contribution of MIF family 
proteins in different phases of the IRI process. Thus overall, 
the evidence from the various experimental IRI models is in 
line with clinical data suggesting a correlation between high 
admission MIF levels in STEMI patients and adverse outcomes 
(Deng et al., 2018), as well as high MIF, inflammation markers, 
and unstable IHD. 

Can  th i s  knowledge  be  explo i ted  for  MIF -based 
cardioprotection in the context of RIPC? A number of recent 
studies argue that this could be the case. Ruze et al. (2019) 
demonstrated in a mouse model that Mif deficiency counteracted 
the protective effect of RIPC on myocardial IRI. They first 
induced I/R in a Langendorff-perfused heart comparing wildtype 
and Mif-deficient (Mif–/–) mice with or without preceding cycles 
of ischemia and reperfusion. The protective effect of RIPC in 
wildtype hearts was lost in hearts from Mif–/– knockout mice. 
The same was found in an in vivo IRI model with evidence 
for a strongly reduced infarct size and cardiac dysfunction. 
Moreover,  RIPC-induced increased cardioprotective 
signaling via the RISK and AMPK pathways and improved 
cardiomyocyte glucose uptake were blunted in hearts from 
Mif–/– mice (Bernhagen, 2019; Ruze et al., 2019). Of note, the 
reversal effect on RIPC-based reduction in infarct size noted 
in Mif-deficient hearts was marked (i.e. >30%), implying that 
MIF could indeed be one of the critical cardioprotective factors 
released in RIPC. A study by Wang et al. (2019) on the role of 
MIF in IPost confirms this conclusion. Wang and colleagues 
studied the causal effect of MIF in IPost in a rat model (Wang 
et al., 2019). They applied 4 cycles of 5 min I/R on the lower 
limbs immediately after reperfusion. IPost led to a significant 
elevation of plasma MIF. Moreover, femoral occlusion blocked 
the rise in plasma MIF, arguing that MIF behaved as a true 
remote conditioning signaling cue. To test for causality, the 
administration of the established pharmacological MIF inhibitor 
(S,R)-3-(4-hydroxy-phenyl)-4,5-dihydro-5-isoxazoleacetic acid 
methyl ester (ISO-1) was compared to a vehicle control. Of 
note, ISO-1 but not a vehicle control prevented cardioprotection 
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and enhanced cardiomyocyte apoptosis in the hearts of IPost-
treated rats. The study also provided initial insight into the 
mechanism. Confirming the earlier MIF/IRI studies, the 
cardioprotective effect of MIF after IPost was correlated with 
elevated myocardial phospho-AMPK levels in IPost-treated but 
not IPost+ISO-1-treated rats. Interestingly, inhibition of HIF-1α 
by a small molecule blocker led to decreased plasma MIF levels 
in IPost, in line with the notion that the remote production 
of MIF in limb tissue is triggered by an ischemia/HIF-1α-
dependent mechanism (Wang et al., 2019). A possible role for 
MIF in cardioprotective conditioning is further confirmed by an 
in vitro study by Goetzenich and colleagues (2014), who studied 
MIF in anesthetic-induced myocardial preconditioning (AIPC). 
Although the stimulating trigger is a different one compared to 
RIPC (i.e. an anesthetic such as sevoflurane rather than cycles 
of hypoxia and hyperoxia), the AIPC phenomenon follows a 
comparable mechanistic principle as RIPC. In contrast, a cardiac 
RIPC study using exogenous recombinant MIF questioned 
whether MIF-based strategies may have practical translational 
potential, as exogenously administered recombinant MIF was 
unable to exert cardioprotection in a Langendorff-perfused 
heart, when administered before (RIPC model) the ischemic 
insult or at reperfusion (IPost model) (Rossello et al., 2016). In 
conjunction with the other studies discussed above, this may 
indicate the general complexities of using recombinant proteins 
on the one hand and specifically the MIF protein on the other 
hand. MIF is known to be susceptible to redox-modulation 
(Schindler et al., 2018), to oligomerize, and has a relatively 
high hydrophobic index (Sun et al., 1996; Mischke et al., 1998), 
which together may render it tricky to control its activity in I/
R-based experimental set-ups. Pharmacologic augmentation by 
MIF20 may represent a solution to this problem, as MIF20 can 
act on endogenous MIF protein (Wang et al., 2013), and could 
thus be a valid RIPC target. 

MIF was also included in one of the smaller follow-up 
studies of RIPHeart and ERICCA, aimed at elucidating the 
confounding factors and the potential role of propofol (Ney et 
al., 2018). The data demonstrated comparable perioperative 
kinetics of MIF and the cognate CXCR4 ligand CXCL12 in the 
RIPC and control group, sharing characteristics that overlap 
with the signaling mechanisms of RIPC, i.e. activation of 
ERK1/2, AKT, and PKCε (Heusch, 2015). In contrast, in the 
intra-operatively collected right atrial tissue specimens, MIF 
was decreased after RIPC, whereas in turn RIPC did not lead to 

an increase in MIF and CXCL12 serum levels, indicating that 
the RIPC stimulus itself limits cardiac MIF expression. This 
may be a preliminary hint that the release of these two CXCR4 
ligands may have been inhibited by propofol in the RIPHeart 
cohort, while the classical inflammatory markers IL-6, CXCL8, 
and IL-10 were not different in the propofol-anesthetized 
patients (Ney et al., 2018).

Lastly, further -indirect- evidence for a potential utility of 
MIF or MIF-related target structures in cardiac RIPC came 
from a recent RIPC model of hepatoprotection after liver 
transplantation. Remote ischemic conditioning (RIC) was 
investigated in a rat model of orthotopic liver transplantation 
(OLT), using both RIPC and IPost settings. Graft micro- and 
macrocirculation and liver damage were the main readouts 
(Emontzpohl et al., 2018). Plasma MIF levels were down-
regulated in this model following RIPC and inversely correlated 
with hepatoprotection, a notion that may be in line with hepatic 
translocation of remotely produced MIF.

Interleukin-10 (IL-10)
Interleukin-10 (IL-10) is a pivotal anti-inflammatory cytokine 
that affects both the innate and adaptive immune systems. 
IL-10 is produced by a wide range of cell types in an NFκ 
B-dependent manner following delayed kinetics compared to 
pro-inflammatory NFκB-triggered cytokines such as TNF-a 
or IL-6. It serves to dampen the inflammatory response as 
a prerequisite to transition into resolution and regeneration. 
The anti-inflammatory properties of IL-10 in the context of 
numerous diseases have been extensively reviewed and will not 
be covered further here (Renauld, 2003; O'Garra and Vieira, 
2007; Saraiva and O'Garra, 2010; Ng et al., 2013; Hotchkiss et 
al., 2016; Comi et al., 2018). Instead, we will focus on a handful 
of recent studies reporting on a specific role of IL-10 in cardiac 
RIPC. 

Since IL-10 is supposed to be a ‘delayed’ cytokine, Cai et 
al. (2012) used a mouse model of myocardial IRI and tested 
the hypothesis that ischemic conditioning may confer late 
protection against IRI through IL-10. In a setting of lower limb 
RIPC followed by 30-min ischemia and 120-min reperfusion, 
RIPC increased plasma and cardiac IL-10 protein levels. Of 
note, anti-IL-10 antibodies fully blocked the protective effect 
of RIPC. Similarly, IL-10 gene knockout led to a loss of RIPC 
cardioprotection, whereas recombinant exogenous IL-10 
mimicked the protective RIPC effect. In a Langendorff heart 
model, IL-10 increased phospho-Akt levels, suggesting that 
RIPC-triggered IL-10 activates cardioprotective pathways 
such as RISK signaling. The study implied that RIPC induces 
protection against myocardial IRI by triggering the expression 
of IL-10 in remote muscle tissue. Muscle-derived IL-10 
is then released into the circulation to promote protective 
signaling in the heart. The role of IL-10 as a remote signal 
in RIPC cardioprotection is underpinned by two studies in 
which preconditioning was achieved by TLR agonists such 
as CpG-oligonucleotides (CpG-ODNs) in a model in which 
IRI was applied 16 h after the conditioning trigger (in this 
case CpG-ODNs instead of RIPC cycles) (Markowski et al., 
2013; Hilbert et al., 2018). In addition to pro-inflammatory 
cytokines, conditioning with CpG-ODNs caused a pronounced 
increase in circulating IL-10 levels that correlated with long-
lasting protection from cardiac IRI. Moreover, inhibition of IL-
10 increased the infarct size and counteracted the beneficial 
influence of CpG-ODN conditioning (Markowski et al., 2013). 
The conclusion from this study that IL-10 is a key remote 
protection signal is further strengthened by the notion that 
a closed-chest model of myocardial IRI was used, which 
circumvents a surge in peri-operative local inflammatory 
reactions. Hilbert and colleagues further confirmed these 
findings by combining CpG-ODN-mediated conditioning and 

Table 2: Overview of the role of ‘other’ cytokines, alarmins, and 
extracellular vesicles/exosomes in cardioprotection by remote 
ischemic preconditioning.
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IRI with a genetic profiling approach. The profiling showed 
that the expected induction of cardiomyocyte survival genes 
correlated with a decrease in inflammatory pathways that in 
turn were suppressed by IL-10 (Hilbert et al., 2018). Thus, the 
up-regulation of protective pathways and the down-regulation 
of inflammatory pathways represent a genetic correlate of the 
cardioprotective effects of ODN preconditioning, with the pro-
inflammatory arm blocked by IL-10. The confirmation of this 
concept by clinical studies is yet pending. 

Nederlof and colleagues (2017) performed a smaller 
randomized tr ial  of  RIPC and control  t reatment  for 
cardioprotection in sevoflurane-anesthetized CABG patients. 
Their initial goal was to further probe the ‘propofol confounder’ 
hypothesis by restricting perioperative anesthesia regimens to 
sevoflurane and fentanyl in their CABG patients, while avoiding 
propofol. While the study remained underpowered and had to 
be halted regarding its initial inclusion target, it could be used 
to study inflammatory mediators such as IL-6, TNF-α, and MIF, 
as well as IL-10. RIPC was without effect on these mediators 
obtained before and immediately after RIPC. An interesting 
study links IL-10 to cardioprotective EVs/exosomes. Cambier 
et al. (2017) demonstrated that Y RNA fragment present in EVs/
exosomes confers cardioprotection via modulation of IL-10 
expression and secretion from cardiac macrophages  (see also 
next chapter).

Other cytokines, alarmins, and extracellular vesicles/
exosomes
It is beyond the scope of this review article to discuss the 
numerous humoral factors that have been implicated in RIPC 
cardioprotection in detail. Nevertheless, Table 2 summarizes 
selected references that have provided appreciable evidence (or 
contra-indicated data) on the role of cytokine- and alarmin-like 
mediators of RIPC cardioprotection, including adipocytokines 
and myokines, the cytokine-like growth factor erythropoietin 
(EPO), the eRNA/RNase1 system, and EVs/exosomes, which 
may among other cardioprotective cargo such as microRNAs 
(mIRs) carry cytokines or chemokines. 

We will briefly discuss two prominent examples. Vicencio 
and colleagues (2015) demonstrated that EVs/exosomes 
deliver protective signals to the myocardium and that this 
occurs via the HSP70/TLR4 axis, expressed on the surface of 
EVs/exosomes and cardiomyocytes, respectively (Vicencio 
et al., 2015; Davidson et al., 2017). They also demonstrated 
that conditioning-competent EVs/exosomes derive from 
endothelium and that the conditioning effect on cardiomyocytes 
involves ERK1/2 signaling (Davidson et al., 2018). Cabrera-
Fuentes, Preissner, Sedding, and colleagues (2014) identified a 
critical role for the eRNA/RNase1 system, which has emerged 
to have a significant clinical impact on the development and 
progress of cardiovascular diseases. Extracellular RNA (eRNA) 
is a cellular alarm signal for tissue damage and has been 
associated with increasing TNF-α levels and may trigger the 
progress of atherosclerosis. It also negatively impacts on the 
consequences of myocardial I/R injury (Cabrera-Fuentes et al., 
2014; Simsekyilmaz et al., 2014; Zernecke and Preissner, 2016). 
The ubiquitous endonuclease RNase1 decreases damaging 
eRNA and TNF-α levels and RNase1 treatment was shown to 
significantly reduce infarct size (Stieger et al., 2017). Of note, 
RNase1 could be directly linked to RIPC. Patients undergoing 
RIPC exhibited increased cardioprotective RNase1 activity and 
decreased eRNA serum levels (Cabrera-Fuentes et al., 2015), 
while the exact mechanism of RNase1-induced cardioprotection 
remains to be explored.

Conclusions
Cytokines and chemokines such as CXCL12, MIF, and IL-10 
have been implicated as remote triggers during RIPC-mediated 

cardioprotection. Moreover, there is appreciable evidence from 
experimental models that they may have a causal role and that 
they may, at least partially, mimic RIPC-based cardioprotection. 
While evidence from clinical trials is not yet available to 
predict whether they may eventually qualify as cardioprotective 
targets they fulfill several of the criteria that an effective RIPC 
signaling cue should have.
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